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Abstract. Energy-resolved electron momentum densities are determined for a thin Si film 
evapomted onto a carbon foil. This is done by transmission (e .2~)  spectmscopy, a technique 
that does not rely on crystal momentum and is therefore ideally suited for the study of amorphous 
materials. Spec? were collected with an energy resolution of 2 eV and a momentum resolution 
of 0.15 au (0.3 A-‘). The main feature disperses in B strikingly similar way to the crystalline 
ones. In addition to the dispersion the intensities of the peaks are obtained. In spite of having 
only a qualitative understanding of the shape of the spectra, the results of the comparison of 
measurrd amorphous momentum densities with calculated crystalline ones are reasonable. The 
buis of this agreement between m r p h u u s  solid and c,ysysfolfine theory is discussed. 

1. Introduction 

Amorphous (or ‘glassy’) solids, especially amorphous semiconductors, have received 
considerable interest in recent years, both because of technological importance, and becuse 
it is a challenge to describe these materials theoretically in a proper way. In a crystal the 
translational symmetry simplifies calculations greatly, and theories are formulated in terms 
of crystal momentum IC with IC = p + G.  where G is a reciprocal lattice vector and p 
the real electron momentum. As early as 1971 Ziman attempted to describe amorphous 
semiconductors such as Si or Ge as a ‘perturbed crystal’ and derived a ‘band structure’ of 
amorphous solids, using bond orbitals [l]. This ‘band structure’ is reproduced, in a slightly 
modified form (drawn in the extended-zone scheme) in figure 1. The conclusion of Ziman’s 
argument was that near the top and bottom of the valence band there, is a dispersion relation 
between energy and momentum similar to a perfect crystal, but in the middle the band is 
broadened because of the lattice disorder. The present paper describes the direct observation 
of the energy-momentum density of the valence electrons of amorphous silicon using 
electron momentum spectroscopy based on the (e, 2e) reaction. For each bound electron 
in an ensemble the complete kinematics of an ionization reaction is observed, enabling its 
real momentum and binding energy to be determined. Factors that~make the observations 
imperfect are described below the description of the experiment. This new technique is 
ideally suited to observe the dispersion relation (and in addition the corresponding electron 
density) for amorphous solids. We verify that the dispersion relation in amorphous Si is 
indeed close to the crystalline one and we set an upper limit to the broadening of the ‘band 
structure’. 

Present addms: Research School of Physical Sciences and Engineering. Australian National University, 
Canberra. ACT 0200, Australia. 

0953-8984/95/020279+10Sl9.50 0 1995 IOP Publishing Ltd 219 



280 M Vos et QL 

k- 0 

Figure 1. Qualitative sketch of the dation between momentum and binding energy as predicted 
by Z i m  for amorphous silicon or germanium. 

The (e,2e) technique differs from earlier observations of densities of states in energy 
or momentum in that it directly measures the energy density for each momentum, and the 
momentum density for each energy. Photoelectron spectroscopy (e.g. [ Z ] )  gives information 
about the energy density. Compton scattering [3] gives information about momentum density 
in one direction, integrated over the other momentum directions and energy. The energy- 
momentum (dispersion) relation can often be inferred from angle-resolved photoelectron 
spectroscopy (for Si see e.g. [4]) under the assumption of a single crystal with aflat surface, 
but it cannot be applied to the question of dispersion in amorphous solids. 

Because of the extremely thin targets necessary for (e,Ze), it is not yet possible to 
perform an (e, 2e) experiment on crystalline or polycrystalline silicon and thus to compare 
energy-momentum densities for different forms. In the present work we confine ourselves 
to answering the question raised by Ziman about the dispersion for amorphous silicon. 
Integrated techniques show only small differences between amorphous and crystalline silicon 
12, 31. Comparisons between amorphous and crystalline forms have been made for carbon 
in an (e,Ze) experiment using the present spectrometer [5, 61. Significant differences in 
the energy-momentum densines were observed for amorphous carbon, annealed amorphous 
carbon and highly oriented pyrolitic graphite (HOPG). However the momentum-integrated 
energy distributions showed negligible~ differences. From this we conclude that integrated 
techniques are not sufficiently sensitive to observe these differences. 

It should be noted that the radial distribution function, as measured by diffraction 
techniques, is much broader for amorphous carbon [7] than for amorphous silicon [SI. 
Amorphous silicon has a quite well defined nearest-neighbour distance, with the second- 
nearest-neighbour distance varying because of deviations of the bond angles from the ideal 
tetrahedral one [9]. In amorphous carbon the order is considerably less, and hence larger 
deviations of the electronic structure are expected. Another possible reason is the presence 
of both sp' and sp3 hybridization in this case. It is therefore expected that the differences 
between the electronic structure of crystalline silicon and amorphous silicon are much 
smaller than those found for the case of carbon. 

In an (e, 2e) measurement an incoming electron ionizes the target and the scattered and 
ejected electrons are detected in coincidence. A well collimated monoenergetic electron 
beam (energy Eo, momentum ko) impinges on a target. Some of these electrons will 
be scattered over large angles by a collision with a target electron. In the case of high- 
momentum-transfer collisions this process is well described as a binary collision between 
the scattered and ejected (target) e l ec tqs  and is quantitatively well understood [lo]. Due 
to the energy transfer the target electron is ejected. We detect both scattered and ejected 
electrons in coincidence and determine their energies and momenta (Es and k, for the slower 
electron, Er and kr for the faster one). We choose atomic units with R = 1 thereby equating 
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momentum and wave numbers. A comparison of the momentum and energy of the scattered 
and ejected electron with the momentum and energy of the incident electron gives us the 
magnitude of the momentum and binding energy of the ejected electron before the collision. 
At high enough energies the electrons can be treated as plane waves. We can determine the 
binding energy E as 

(1) 

and the recoil momentum q, which in the plane-wave impulse approximation is equal and 
opposite to the momentum of the target electron before the collision: 

(2) 

E = Eo - E,  - Ef 

Q = ko - k, - kr. 
Thus a complete description of the kinematics of the ionizing event is obtained. In this 
paper momentum is expressed in atomic units. 1 atomic unit is 1.89 A-'. 

For crystals this technique should be able to measure the dispersion law E(k), where k 
is usually restricted to the first Brillouin zone. One obtains the value of k by adding the 
appropriate reciprocal lattice vector G to q. It should work for polycrystalline solids in the 
same way as for single crystals (obtaining of course an angular average in the former case). 
More significantly it should be able to obtain the relation between real electron momentum 
q and binding energy in an amorphous solid, where the concept of crystal momentum does 
not apply. 

2. Experimental details 

In our spectrometer we use the simultaneous detection of multiple energies and azimuthal 
angles in both detectors in order to shorten the data acquisition time. Extensive details 
of this spectrometer are given elsewhere [ I  I]. The spectrometer is shown schematically 
in figure 2. An asymmetric geometry was chosen, as the Mott cross-section for electron- 
electron scattering is strongly peaked in the forward direction, with EO = 20 keV, E ,  = 18.8 
keV, scattering angle 14", E$ -1.2 keV, angle 76". This resulted in count rates of several 
hundreds of true coincidences a minute for amorphous carbon films of 80 A thickness and 
a data-acquisition time of a few days for a complete set of spectra. 

Figure 2. In (a) the experimental geometry is outlined. Both scattered and ejected electmns 
are detected over a range of azimuthal angles. The direction of the momentum of the detected 
elecmn~ is mughly along the y axis. In (b) we show the Orientation of the samples relative 
to the electron beams involved. Due to the low mean free path of the 1.2 keV electmns only 
(e.%) events occurring in the evaporated silicon layer (hatched) have an appreciable chance of 
being detected without funher energy loss. 

Under these experimental conditions the momentum components perpendicular to the 
surface cancel, and the measured momentum is in the plane of the surface (y direction). An 
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additional property of the asymmetric set-up is the fact that one of the outcoming electrons 
has rather low energy. This electron has by far the lowest elastic and inelastic mean free 
paths, and it determines the depth over which information from the target is obtained. In 
our case 35 .& of silicon was evaporated on an amorphous carbon backing of 80 A and 
is indicated as the shaded layer in figure 2. Room-temperature deposition is known to 
result in amorphous silicon [8]. The evaporated thickness was determined from a crystal- 
thickness monitor. The effective thickness of this layer is 50 .&, because the outgoing angle 
for the slow (as well as for the fast) electron was 45". The estimated inelastic mean free 
path for an electron at 1.2 keV is 22 A and the elastic mean free path is 15 A. Thus the 
direct contribution of the carbon backing (assuming a homogeneous coverage) is suppresed 
by a factor of about 250 compared to its intensity before the evaporation. The vacuum 
during evaporation was 3 ~ 1 0 - ~  Torr. After the evaporation the sample was transferred 
under vacuum to the main chamber with a pressure of 2: 2.5 x 1O-Io Tom during the actual 
measurement. 

The sample-preparation method described above should be applicable to all materials 
that can be evaporated, and do not have a strong tendency to form islands on an amorphous 
carbon backing. Samples prepared in this way should have relatively clean surfaces. It is 
an easy way to prepare a wide variety of suitable (e,2e) targets. Historically the thickness 
required for (e,2e) targets has limited its use almost exclusively to carbon films [12, 13, 141. 
The surface sensitivity of the present set-up may also allow the study of surface effects. 
Of course these samples will be either polycrystalline or amorphous. The preparation of 
suitable single-crystal samples will require more complicated procedures. 

3. Results and discussion 

In figure 3 we show a set of (e, 2e) spectra for the different momentum intervals indicated. 
Any carbon contributing to the spectra would cause a peak around 27 eV below the vacuum 
level for zero momentum [5]. However even this most intense feature is still buried in 
the noise. We will assume thus that, within statistical accuracy, all intensity is due to the 
silicon overlayer. The raw data were deconvoluted for inelastic energy loss using a smooth 
function peaking around 20 eV energy loss. Because both carbon and silicon contribute 
to the loss function and three electrons with different trajectories and energies have to be 
taken into account, it is not easy to obtain this function experimentally. It is therefore not 
possible to derive the deconvolution parameters in a rigorous way, as has been done for 
pure carbon samples in [15]. As carbon has a broad plasmon loss feature with maximum 
intensity -25 eV energy loss (depending on its density) and Si has maximum energy loss 
at -15 eV, we choose a smooth loss function with a maximum around 20 eV. The amount 
of deconvolution was determined empirically, so the intensity well below the bottom of the 
silicon valence band is approximately equal to zero. The spectra of different momenta were 
deconvoluted with exactly the same parameters, and the general low value of the intensity 
at high binding energy gives some confidence in the procedure followed. Different shape 
response functions will redistribute the intensity of the spectra to some extent, but will not 
affect the derived peak positions severely. The main feature is a peak around 17 eV (below 

.the vacuum level) for zero momentum, slowly dispersing towards lower binding energy 
with increasing momentum. 

In order to compare this behaviour with the one expected for crystalline silicon 
(unfortunately no (e,2e) measurements of crystalline silicon are available to date) we plot 
the calculated momentum deusitiek of angular-averaged crystalline silicon in the same plot. 
These calculations were obtained using a linear-muffin-tin orbital (LMTO) approach [16]. 
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Figure 3. The energy spectra for different momenta of the amorphous silicon layer. The raw 
data (error bars) have been deconvoluted (full lines) from (e, 2e) evenls with plasmon excitation. 
The calculated angular-avenged momentum densities of crysnlline silicon are plotted as broken 
lines. Note that the strongest feature of C is a peak at U eV below the Fermi level and is not 
visible at all in these spectra. 

Results were convoluted by a Gaussian of 3 eh’ full width at half maximum, in order 
to facilitate comparison with experiment. Only part of this 3 eV is due to expenmental 
broadening, as we measured the width of the carbon 1s core level under similar experimental 
conditions to be 2 eV [17]. Experimental binding energies are obtained relative to the 
vacuum level, whereas the calculation is relative to the valence-band maximum (VBM). The 
position of the valenceband maximum was estimated to be between 4 and 4.5 eV below 
the vacuum. This was inferred from the onset of the experimental spectra at this value for 
high momentum (-1 au). Clearly the experimental dispersion for amorphous silicon and 
the theoretical dispersion for crystalline silicon are very similar. 

The measured and experimental dispersion are once more compared in figure 4. In 
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Figure 4. The rnoasumd electrfln energy-momentum disuihution for the amorphous silicon layer 
(a). The lighter the shading the higher the intensity. Note the qualitative similarity with figure 
I .  In (b) we plot the calculated intensity (averaged over all CTystal directions and broadened 
with the experimental energy and momen” resolution) in a similar fmhion. In (c) we compare 
the measured dispersion relation with the one obtained from this calculation. 

figure 4(a) we show the experimental measured intensity (after deconvolution) as a grey 
scale plot. The points with highest intensity have the lightest shading. Notice the qualitative 
resemblance with figure 1. Thus the prediction made by Ziman in 1971 [ l ]  that the 
dispersion in an amorphous semiconductor resembles the crystalline one is verified. In 
figure 4(b) we show the theoretical calculation, convoluted with momentum and energy 
resolution, in a similar plot. The calculated ‘image’ of the valence band and the measured 
‘image’ resemble each other nicely. The dispersion of the momentum with energy was 
determined from the energy position of the feature with highest intensity as determined 
from spectra as plotted in figure 3. This is shown in figure 4(c) together with a theoretical 
estimate. Note the excellent agreement between theory and experiment. 

Having verified that the dispersions of the amorphous and crystalline solids are quite 
similar, we now turn to the question of whether we can determine the degree of ‘fuzziness’ 
of the dispersion relation due to the lattice disorder. Unfortunately our experiment has finite 
momentum and energy resolution (estimated to be respectively 0.15 au and 2 eV). Thus 
this determination is not a trivial one. From figure 1 we see that the excess width is largest 
where the dispersion is steepest. This means that the best way to attempt to determine the 
width is by studying the momentum-density plots as a function of energy. The finite energy 
resolution does not contribute much to the width of the momentum plots at energies other 
than near the bottom of the band because binding energy changes quickly with momentum. 
These plots are shown in figure 5 for the deconvoluted data. Also plotted in this figure is 
the theoretical estimate of the momentum densities. Excellent agreement is obtained for 
the peak positions. The main discrepancy is the intensity at small binding energies near 
zero momentum. This is of course the same excess intensity as we discussed in the energy 
spectra of figure 3. We have no clear indication of any excess width in the momentum 
peaks. So we estimate that the maximum fuzziness due to the disorder is less than 0.15 au 
(0.3 k’). 

Let us now focus on the big differences between the experimental and theoretical results. 
Most noticably there is a lot of intensity at binding energies lower than the main feature. 
It is tempting to attribute this to the amorphous nature of the sample. However (e,2e) 
experiments done with the same spectrometer on crystalline graphite films show a similar 
behaviour [ S ,  61. This is especially clear in the energy-resolved momentum-density plots 
as shown for selected energies for both silicon and annealed (i.e. partly recrystallized) 
evaporated carbon and HOPG as shown in figure 6. The binding energies of the silicon and 
carbon samples were chosen in such a way that the separation of the momentum peaks is 
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Momentum (4') 

Momentum (Atomic units) 
Figum 5. The measured intensity as a function of electron momentum for different energies 
as indicated. Also shown are the densities obtdned from the band strc:ture calculations after 
broadening with the momentum and energy resolution. 

approximately the same for both cases. We suggest that the general equivalent shape of all 
three densities shows that the same physics governs the shape of all three densities. In all 
three cases there is a significant intensity between the peaks corresponding to the dispersing 
bands, whereas outside these peaks, the intensity drops quickly to zero. In principle this 
intensity between the band peaks could have three causes. 

(i) It is a true reflection of the momentum density, but (for example because we measure 
near the surface) the momentum density is nor properly described by the band structure 
calculations. If this were the case one would expect this intensity to change if one changed 
the surface sensitivity of the experiment, by changing the angle with the surface of the 
slow electrons. Experimental tests for the case of annealed evaporated carbon show that 
variations in shape with exit angle, if present at all, are very minor. 

(ii) It is due to 'satellite structures' which affect the energy balance of equation (1). 
Satellite structures usually show up at the high-binding-energy side (i.e. away from the Fermi 



286 M Vos et al 

Momentum (A-') 
4 -2 
' I  
a) 

I 

-2 - 1  

Momentum (Atomic Units) 
Figure 6. A comparison of the momentum densities of HOE (a), annealed evaporated carbon 
(b) and amorphous silicon (c). A binding energy (relative to the vacuum level) of 18 eV for 
the two carbon densities md of 6 eV for the silicon one was chosen because their momentum 
pedis have similar separation. Notice the similar shapes of the densities, with all of them having 
P signifimt intensity at zero momentum, suggesting that these shapes have the same physical 
origin. 

level) of the main peak. From figure 3 we see that the main excess intensity is at the low- 
binding-energy side. We should be careful however because we could have removed a lot of 
satellite intensity at the high-binding-energy side by the somewhat arbitrary deconvolution 
procedure. Assuming that the excess intensity is due to satellites (with no momentum 
changes due to these satellites) it could be correct to compare the total area of the measured 
deconvoluted spectra of figure 3 with the theoretical densities as shown in figure 3. The 
satellites would then only cause a redistribution of the intensity within the same momentum 
bin. This comparison is plotted in figure 7(a). Measurement and calculations agree quite 
well, although we want to stress that we have no justification for attributing the intensity at 
lower binding energy and small momentum to a 'satellite structure'. 

(iii) It could be due to elastic scattering through an appreciable angle of one of the 
electrons involved. This will affect the momentum balance of equation (2) and hence 
causes the inference of the wrong target electron momentum. We want to stress the vector 
nature of momentum here. The spectrometer measures target-electrons with momentum 
along the y direction (figure 2), assuming no multiple scattering. Additional momentum 
transfer due to elastic multiple scattering has a number of possible effects on the (e, 2e) 
events measured. These are (a) a target electron with momentum along they axis is ejected 
and its (e,2e) event is detected but the wrong momentum is calculated (although it is still 
along the y axis), (b) an electron with momentum along the y axis is ejected but because 
of elastic scattering its momentum as inferred from equation (2) is not along the y axis any 
longer, and hence cannot be detected, (c) a target electron with its momentum not directed 
along the y axis is ejected, but due to elasic scattering its (e,2e) event is detected, and it 
is wrongly inferred that the original momentum was along the y axis. Thus this case is 
considerably more complicated than the energy-loss one. There is a clear asymmetry in the 
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density plots of figure 5 (i.e. there is more excess intensity on the low-momentum side of the 
peaks than on the high-momentum side). This can be attributed to the vector nature. Many 
different initial states with the same value of IqI (and hence approximately the same binding 
energy) can, after small-angle elastic-scattering events of one of the electrons involved in 
the (e.2e) event, contribute to the intensity near zero momentum. At larger momenta than 
the main peaks small-angle scattering is sufficient for only those initial states with q already 
pointing in about the right direction. 

Electson Mamenlum (A-’) (b) Binding Energy rel. to vacuum level (ev) (4 
0 S to 15 

- m *= PE 
( Y .  

6% 
a- 
=g CY) 

I 5  -5 0 S I O  

Electron Momenlum (atomic units) Binding Energy rel. to VBM (eV) 

Figure I. A comparison of the experimental and theoretical densities. In (a) we plot the 
momentum density a function of energy from the areas shown in figure 3. In (b) we plot the 
linear energy density as a function of momentum from the areas as ploIted in figure 5. 

Thus because of the vector nature of momentum we cannot say that elastic scattering 
would merely cause a redistribution of the measured intensity of the energy-resolved 
momentum-density plots as shown in figure 5. Still the dependence of the ratio of the 
measured and calculated areas as shown in figure 5 may provide a clue to this puzzle. These 
‘linear energy densities of states’ are shown in figure 7(b). Both experiment and theory 
show a maximum around 3 eV below the valence-band maximum while the experiment 
has considerably less intensity at high binding energies. These energies correspond to the 
bottom of the band i.e. around zero momentum. Note that for zero momentum scattering 
of type iii(c) does not exist, so we cannot add spurious momentum by elastic scattering in 
that case. This may be the reason why the curve is relatively low at these energies. 

In principle the true energy density of states could be obtained from figure 5 by weighting 
them with a qz. In practice this is difficult because the integration has to be extended to 
high momentum values before convergence is obtained. Well before this momentum value 
is reached (up to 4 au according to the calculations!) the experimental intensity is much 
smaller than their error bars. Thus although agreement is less good for case (iii) than case 
(ii) the deviation found is the one expected if events of type iii(c) are important. Reasonable 
agreement could probably be obtained if we took the area in the sharp peaks at low binding 
energies (discarding the contaminated (e, 2e) events, mainly of type iii(c) in the middle) and 
take all intensity at the bottom of the band (where events of type iii(c) do not contribute), 
with some intermediate approach in between. At present we have not developed a method 
to do this without an excess of arbitrary assumptions. We are proposing to calculate them. 
Looking at figure 5 this approach, especially if we succeed in improving the momentum 
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resolution, could well turn out to be feasible. 

4. Condusion 

In summary we have measured energy-resolved momentum densities in amorphous silicon. 
We have shown that the main intensity disperses in a way strikingly similar to crystalline 
silicon. With OUT present resolution we can only set an upper limit to the broadening of the 
band structure of 0.15 au. Calculations of the energy momentum densities for a bulk crystal 
are compared with the ones measured for the amorphous form. The present experiment 
raises some questions in the context of the (e,2e) technique. Why are the observed 
densities in  the high-momentum tail larger than the ones calculated by the independent- 
particle model for a bulk crystal? We believe the differences to be significant, although 
this conclusion might change when we improve the energy and momentum resolution of 
the spectrometer. The momentum distribution could conceivably be broadened by diffuse 
scattering. This can be tested by comparing targets with different silicon thicknesses. 
Experience with (e,2e) reactions in the gas phase [IO] has shown that one cannot trust 
the higher-momentum components from independent-particle calculations. To what extent 
the momentum broadening is an effect due to the amorphous nature will be tested, among 
other things, by future experiments on crystalline silicon. These questions, and others, 
suggest that (e, 2e) spectroscopy of silicon is a fruitful field for future experiments that will 
become possible with further development of the technique. 
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